Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Bromo-2-(4-methoxyphenoxy)ethane

Lei Shen,^a Yong-Hong Hu,^b Wen-Ge Yang,^a* Xiao-Lei Zhao^a and lin-Feng Yao^a

^aSchool of Pharmaceutical Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and ^bCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: chemywg@126.com

Received 14 December 2009; accepted 15 January 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.011 Å; R factor = 0.069; wR factor = 0.155; data-to-parameter ratio = 15.6.

In the crystal structure of the title compound, $C_9H_{11}BrO_2$, molecules are stacked parallel to the *b*-axis direction, forming double layers in which the molecules are arranged head-tohead, with the bromomethyl groups pointing towards each other.

Related literature

For background to the use of the title compound as a pharmaceutical intermediate, see: Ran et al. (2000). For bondlength data, see: Allen et al. (1987).

Experimental

Crystal data C₉H₁₁BrO₂ $M_r = 231.09$

Monoclinic, $P2_1/c$ a = 21.112 (4) Å

b = 5.4180 (11) Åc = 8.3230 (17) Å $\beta = 94.54 \ (3)^{\circ}$ V = 949.0 (3) Å³ Z = 4

Data collection

Refinement

S = 1.01

 $wR(F^2) = 0.155$

1713 reflections

 $R[F^2 > 2\sigma(F^2)] = 0.069$

Enraf–Nonius CAD-4	1713 independent reflections
diffractometer	1050 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.073$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.481, T_{\max} = 0.674$	reflections
1759 measured reflections	intensity decay: 1%

110 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.66 \text{ e} \text{ \AA}^ \Delta \rho_{\rm min} = -0.55$ e Å⁻³

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2122).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Ran, C. Z., Xia, L., Ni, P. Z. & Fu, J. H. (2000). J. Chin. Pharm. Univ. 31, 246-250.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Mo $K\alpha$ radiation $\mu = 4.29 \text{ mm}^{-3}$

 $0.20 \times 0.10 \times 0.10$ mm

T = 293 K

supplementary materials

Acta Cryst. (2010). E66, 0439 [doi:10.1107/S1600536810001893]

1-Bromo-2-(4-methoxyphenoxy)ethane

L. Shen, Y.-H. Hu, W.-G. Yang, X.-L. Zhao and J.-F. Yao

Comment

The tile compound, (I), contains halogen and methoxy groups, which can react with differen groups to prepare various functional organic compounds as a fine organic intermediate (Ran *et al.*, 2000). we report herein its crystal structure.

In the molecule of the tile compound (Fig.1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The O1 and O2 atoms (Table 1) lie in the benzene ring plane. No intramolecular hydrogen bonds were observed.

In the crystal structure, the molecules are stacked along the b axis and the 'double layers' of molecules lying with all their bromomethyl groups together (Fig.2).

Experimental

4-methoxyphenol (18.6 g,0.15 mol) was dissolved with stirring in water (80 ml) containing sodium hydroxide (9.0 g, 0.25 mol) and TBAB (0.48 g, 0.0015 mol) and then added dropwise to excess refluxing ethylene dibromide (65 g, 0.35 mol). The reaction mixture was heated under reflux for 12 h, cooled and extracted into chloroform. The combined organic extracts were washed with water, dried over Na₂SO₄, filtered and evaporated to dryness to yield an oil. Fractionation under reduced pressure yielded 1-Bromo-2-(4-methoxyphenoxy)ethane as a colorless oil, then cooled to give 27.3 g white solid (78.9% yield). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C/O)$, where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A packing diagram of (I).

1-Bromo-2-(4-methoxyphenoxy)ethane

Crystal data

C₉H₁₁BrO₂ $M_r = 231.09$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 21.112 (4) Å b = 5.4180 (11) Å c = 8.3230 (17) Å $\beta = 94.54$ (3)° V = 949.0 (3) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	1050 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.073$
graphite	$\theta_{\text{max}} = 25.3^\circ, \ \theta_{\text{min}} = 1.9^\circ$
$\omega/2\theta$ scans	$h = -25 \rightarrow 0$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = 0 \rightarrow 6$
$T_{\min} = 0.481, T_{\max} = 0.674$	$l = -9 \rightarrow 9$
1759 measured reflections1713 independent reflections	3 standard reflections every 200 reflections intensity decay: 1%

F(000) = 464

 $\theta = 9 - 13^{\circ}$

 $\mu = 4.29 \text{ mm}^{-1}$ T = 293 K

Block, colourless

 $0.20\times0.10\times0.10~mm$

 $D_{\rm x} = 1.617 \ {\rm Mg \ m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 25 reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.155$ S = 1.011713 reflections 110 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.060P)^2 + 5.P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.66 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.55 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(20)]^{-1/4}

Extinction coefficient: 0.010 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	
Br	0.43028 (5)	0.39656 (16)	0.68335 (11)	0.0565 (4)	
01	0.0725 (3)	0.4636 (12)	0.1822 (7)	0.0603 (17)	
C1	0.0493 (5)	0.2506 (19)	0.0971 (11)	0.068 (3)	
H1A	0.0047	0.2689	0.0682	0.102*	
H1B	0.0564	0.1077	0.1643	0.102*	
H1C	0.0713	0.2313	0.0012	0.102*	
O2	0.3246 (3)	0.5406 (10)	0.4019 (5)	0.0443 (14)	
C2	0.1538 (4)	0.6649 (13)	0.3366 (8)	0.0344 (18)	
H2A	0.1238	0.7785	0.3664	0.041*	
C3	0.1353 (3)	0.4740 (14)	0.2328 (8)	0.0305 (17)	
C4	0.2150 (3)	0.6877 (13)	0.3951 (8)	0.0317 (17)	
H4A	0.2263	0.8141	0.4673	0.038*	
C5	0.2602 (3)	0.5311 (12)	0.3510(7)	0.0266 (16)	
C6	0.2427 (4)	0.3359 (14)	0.2494 (8)	0.0374 (19)	
H6A	0.2731	0.2239	0.2203	0.045*	
C7	0.1801 (4)	0.3076 (14)	0.1914 (8)	0.0361 (19)	
H7A	0.1683	0.1755	0.1755 0.1243 0		
C8	0.3458 (4)	0.7249 (14) 0.5127 (8)		0.039 (2)	
H8A	0.3222	0.7152	0.6079	0.047*	
H8B	0.3387	0.8866	0.4646	0.047*	
C9	0.4136 (4)	0.6893 (15)	0.5575 (9)	0.0408 (19)	
H9A	0.4299	0.8313	0.6186	0.049*	
H9B	0.4360	0.6791	0.4603	0.049*	
4 1 1		2			
Atomic displace	ment parameters (A)			
	r.11 n	r 22 r 33	T 12	T 13	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.0742 (7)	0.0413 (5)	0.0505 (6)	0.0066 (5)	-0.0173 (4)	0.0053 (5)
01	0.051 (4)	0.066 (4)	0.062 (4)	0.002 (3)	-0.011 (3)	-0.013 (3)
C1	0.076 (7)	0.069 (7)	0.056 (6)	-0.010 (6)	-0.021 (5)	-0.011 (5)
O2	0.061 (4)	0.051 (4)	0.019 (3)	0.002 (3)	-0.006 (2)	-0.007(2)
C2	0.053 (5)	0.026 (4)	0.025 (4)	0.006 (3)	0.006 (3)	0.005 (3)

supplementary materials

C3	0 036 (4)	0 037 (4)	0.018 (4)	0.008(4)	0.000(3)	-0.007(3)	
C4	0.045 (4)	0.022 (4)	0.027 (4)	0.002 (4)	0.001 (3)	-0.009(3)	
C5	0.046 (4)	0.023 (4)	0.010 (3)	0.002(3)	-0.001(3)	0.005 (3)	
C6	0.058(5)	0.033(5)	0.020(4)	0.002(0)	-0.003(3)	0.000 (3)	
C7	0.064 (5)	0.026 (4)	0.016 (4)	-0.001(4)	-0.011(3)	-0.003(3)	
C8	0.068 (6)	0.029(4)	0.018 (4)	-0.011(4)	-0.008(3)	0.005 (3)	
C9	0.048 (5)	0.040 (5)	0.034 (4)	-0.016(4)	0.000 (4)	0.004 (4)	
					()		
Geometric paran	neters (Å, °)						
Br—C9		1.918 (8)	C4—C	5	1.	.350 (9)	
O1—C3		1.360 (9)	C4—H	[4A	0.9300		
01—C1		1.421 (11)	С5—С	6	1.386 (9)		
C1—H1A		0.9600	C6—C	27	1.380 (10)		
C1—H1B		0.9600	С6—Н	16A	0.9300		
C1—H1C		0.9600	С7—Н	[7A	0.9300		
O2—C5		1.393 (8)	C8—C	9	1.	.463 (10)	
O2—C8		1.408 (9)	C8—H	[8A	0.9700		
C2—C4		1.350 (10)	C8—H	18B	0.9700		
C2—C3		1.384 (10)	С9—Н	19A	0.9700		
C2—H2A		0.9300	С9—Н	I9B	0.	.9700	
С3—С7		1.370 (10)					
C3—O1—C1		118.4 (7)	С6—С	25—O2	1	14.9 (6)	
O1—C1—H1A		109.5	С7—С	26—C5	120.0 (7)		
O1-C1-H1B		109.5	С7—С	6—H6A	120.0		
H1A—C1—H1B		109.5	C5—C	6—H6A	12	20.0	
01—C1—H1C		109.5	С3—С	27—C6	12	20.0 (7)	
H1A—C1—H1C		109.5	С3—С	27—H7A	12	20.0	
H1B—C1—H1C		109.5	C6—C	27—H7A	12	20.0	
С5—О2—С8		118.5 (6)	02—0	C8—C9	10	09.1 (7)	
C4—C2—C3		120.6 (7)	02—0	O2—C8—H8A		109.9	
С4—С2—Н2А		119.7	С9—С	С9—С8—Н8А		09.9	
С3—С2—Н2А		119.7	02—0	O2—C8—H8B		09.9	
O1—C3—C7		124.8 (6)	С9—С	C9—C8—H8B		09.9	
O1—C3—C2		116.4 (6)	H8A—	-C8—H8B	10	08.3	
C7—C3—C2		118.8 (7)	C8—C	9—Br	1	12.4 (5)	
C2—C4—C5		121.5 (7)	C8—C	29—H9A	10	09.1	
C2—C4—H4A		119.3	Br—C	9—H9A	10	09.1	
С5—С4—Н4А		119.3	C8—C	29—H9B	10	09.1	
C4—C5—C6		119.0 (7)	Br—C9—H9B		109.1		
C4—C5—O2		126.1 (6)	H9A—	-C9—H9B	10	07.9	
C1—O1—C3—C	7	8.3 (11)	C8—C	02—C5—C6	-	176.4 (6)	
C1-O1-C3-C2	2	-170.1 (7)	C4—C	25—C6—C7	1.	.7 (10)	
C4—C2—C3—O	1	179.0 (7)	02—0	C5—C6—C7	179.9 (6)		
C4—C2—C3—C3	7	0.5 (10)	01—0	С3—С7—С6	179.8 (7)		
C3—C2—C4—C5	5	2.0 (11)	C2—C	23—С7—С6	-1.8 (10)		
C2—C4—C5—C6	6	-3.1 (10)	С5—С	с6—С7—С3	0.7 (10)		
C2-C4-C5-O2	2	178.9 (6)	С5—С	C5—O2—C8—C9		176.1 (6)	
C8-02-C5-C4	4	1.6 (9)	O2—C8—C9—Br		-68.6 (7)		

Fig. 1

Fig. 2

